
Byways, Slab Lane, Downton, Salisbury, SP5 3PS. Tel: 01725 512065

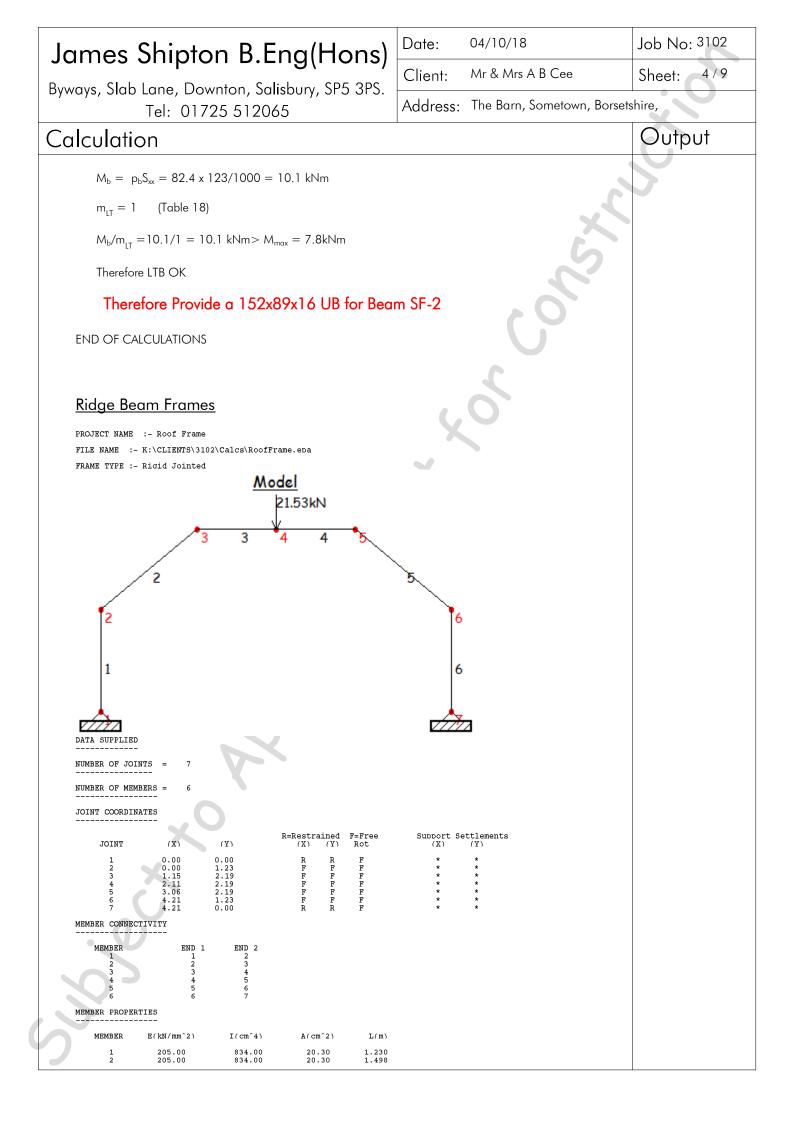
Date:	04/10/18	Job No: 3102
Client:	Mr & Mrs A B Cee	Sheet: 1/9

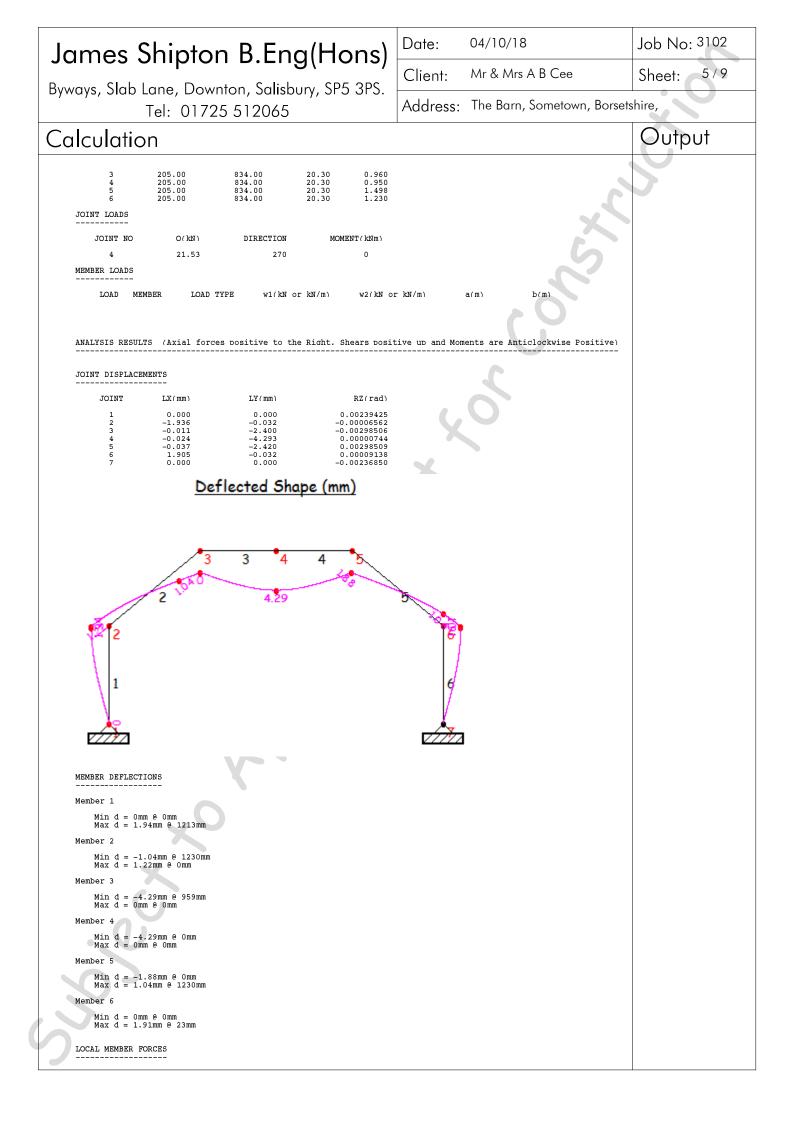
Address: The Barn, Sometown, Borsetshire,

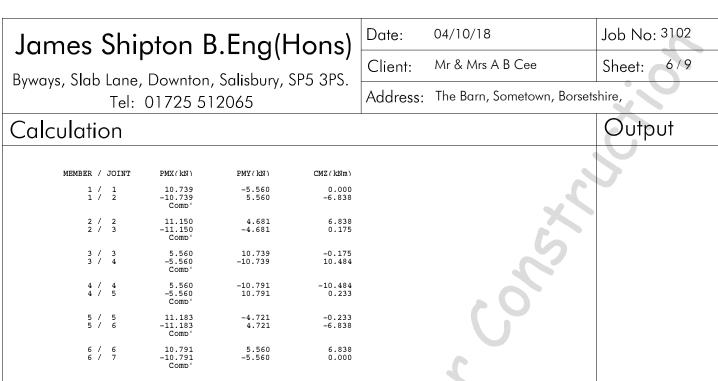
Calculation

James Shi

Byways, Slab Lane Tel:

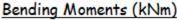

ames Shipton B.Eng(Hons)	Date: 04/10/18	Job No: 3102
ways, Slab Lane, Downton, Salisbury, SP5 3PS.	Client: Mr & Mrs A B Cee	Sheet: 3/9
Tel: 01725 512065	Address: The Barn, Sometown, Borsets	shire,
alculation		Output
Use Unfactored Live Loads for Deflections.	2.	
Allowable Deflection = $4360/360 = 12.1$ mm	X	
Max deflection occurs at $x = 1.438m$	2	
$\delta = 1.5$ mm		
Beam deflection> OK	\mathbf{C}	δ=1.5mm
Bearing Stress	C	
Mortar designation(iii), Bearing Type 1	6	
Bearing Stress on Padstones:	X	
$\sigma_{allow} = 1.25 \ x \ 20 \ / \ 3.5 = 7.1 \ N/mm^2$	X	
$\sigma_{R1} = 10.2 \text{ x } 10^3 \text{/} (88.7 \text{ x } 100) = 1.2 \text{ N/mm}^2$	0	
$\sigma_{R2} = 26.4 \times 10^3 / (88.7 \times 100) = 3 \text{ N/mm}^2$		
$\sigma_{R3} = -2.1 \text{ x } 10^3 \text{/} (88.7 \text{ x } 100) = -0.2 \text{ N/mm}^2$		
Bearing Stress on Brickwork:		
$\sigma_{allow} = 1.25 \text{ x } 3.5 / 3.5 = 1.25 \text{ N/mm}^2$		
$\sigma_{\rm R1} = 10.2 \ x \ 10^3 / \ (100 \ x \ 300) = 0.34 \ N/mm^2 \qquad \mbox{Pad}$	stone L=300mm	
$\sigma_{\rm R2} = 26.4 \ x \ 10^3 / \ (100 \ x \ 300) = 0.88 \ N/mm^2 \qquad \mbox{Pad}$	stone L=300mm	
$\sigma_{R3} = -2.1 \times 10^3 / (100 \times 300) = -0.07 \text{ N/mm}^2$ Pade	stone L=300mm	
LTB Check		
L _E = 5.5368m (Table 13)		
r _y = 2.1cm (Section Tables)		
$\lambda = L_{e} \ / \ r_{y} = 5.5368 \ / \ 0.021 = 263.7$		

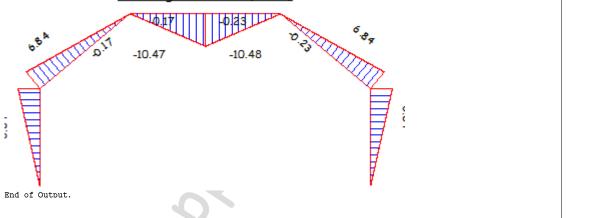

Calculation

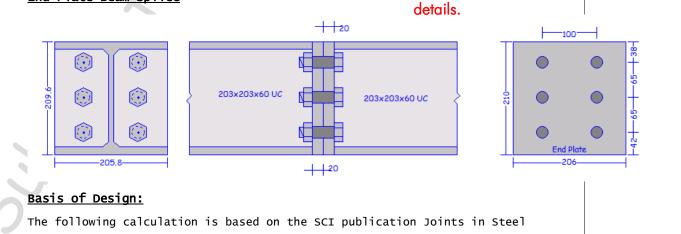

$\sigma_{allow} = 1.25 \text{ x} 3.5 / 3.5 = 1.25 \text{ N/mm}^2$	
$\sigma_{R1} = 10.2 \text{ x } 10^3 \text{/} (100 \text{ x } 300) = 0.34 \text{ N/mm}^2$	Padstone L=300mm
$\sigma_{R2} = 26.4 \text{ x } 10^3 \text{/} (100 \text{ x } 300) = 0.88 \text{ N/mm}^2$	Padstone L=300mm
$\sigma_{\rm R3}^{}=-2.1\times10^3/~(100\times300)=-0.07~\rm N/mm^2$	Padstone L=300mm

LTB Check

$L_E = 5.5368m$ (Table 13)	
r _y = 2.1cm (Section Tables)	
$\lambda = L_{e} \ / \ r_{\gamma} = 5.5368 \ / \ 0.021 \ = \ 263.7$	
u = 0.89 (Section Tables)	
x = 19.6 (Section Tables)	
$\lambda/x = 263.7/19.6 = 13.45$	
v = 0.56 (Table 19)	
$\lambda_{LT} = \mbox{ uv} \lambda \beta_w^{0.5} = 0.89 x 0.56 x 263.7 = 131.8 \qquad (\beta_w = 1 \mbox{ for Class } 1.6 x + 1.5 x + $	& 2 Sections.)
$P_{b} = 82.4 \text{ N/mm}^{2}$ (Table 16)	






JOINT	PX(kN)	PY(kN)	CZ(kNm)
1	5.560	10.739	0.000
2	0.000	0.000	0.000
3	0.000	0.000	0.000
4	0.000	-21.530	0.000
5	0.000	0.000	0.000
6	0.000	0.000	0.000
7	-5.560	10.791	0.000

Beam Splice for Beam FF-3

End Plate Beam Splice

See Structural

Engineer's drawing for fabrication

Byways, Slab Lane, Downton, Salisbury, SP5 3PS.

Tel: 01725 512065

Date:	04/10/18	Job No: 3102
Client:	Mr & Mrs A B Cee	Sheet: 7/9
Address:	The Barn, Sometown, Borsets	shire,
		Quitout

Calculation

Output Construction Moment Connections (1995). The compression zone is taken as acting at the centre of the top beam flange. The top bolt row acts in shear only. The bending moment at the splice is resisted by the other bolt rows. **Input Data** Section: 203x203x60 UC Beam Length = 7.1mSplice at 1m Section Dimension: D = 209.6mm B = 205.8mm T = 14.2mm t = 9.4mm End Plate 1 Dimensions: D = 210mm B = 206mm t = 20mm py = 265N/mm² End Plate 2 Dimensions: D = 0mm B = 206mm t = 20mm $py = 265N/mm^2$ Provide S265 End Plates 210 x 206 x 20mm Provide 3 pairs of M2O 8.8 bolts in ϕ 22mm holes at 100 Horizontal Centres. Distance to top bolt row from top of End Plate = 38mm Distance to second bolt row from top of End Plate = 103mm Pitch of remaining bolts = 65mm **Basic Detailing Checks** Tension Flange Weld Tb/1.4 = 14.2/1.4 = 10.1mm (say 11mm) web weld tb/1.4 = 9.4/1.4 = 6.7mm (say 7mm) Hole Diameter D = d + 2 = 22mmEpsilon $\varepsilon = (275/P_V)^{0.5} = 1.02$ Minimum Bolt Spacing (6.2.1.1): $s_{min} > 2.5d$ $s_{min} = 2.5 \times 20 = 50$ e2-et = 103-38 = 65 > 50--> OK P = 65 > 50--> OK Maximum Bolt Spacing (6.2.1.2): $s_{max} < 14tp$ $s_{max} = 14x20 = 280$ e2-et = 103-38 = 65 < 280--> OK P = 65 < 280 --> OK Minimum End & Edge Distance (6.2.2.4): emin> 1.25D = 1.25x22 = 27.5mm et = 38 > 25--> OK eb = 42 > 25 --> OK e = 53 > 25 --> OK Maximum End & Edge Distance (6.2.2.5):

Byways, Slab Lane, Downton, Salisbury, SP5 3PS. Tel: 01725 512065

Date:	04/10/18	Job No: 3102
Client:	Mr & Mrs A B Cee	Sheet: 8/9

Address: The Barn, Sometown, Borsetshire,

Calculation

Output $e_{max} < 11t\epsilon$ $e_{max} = 11x20x1.02 = 224.11mm$ et = 38 < 224.11 eb = 42 < 224.11 --> OK --> OK e = 53 < 224.11OK Horizontal bolt spacing should not exceed 55% of end plate width. $0.55B = 0.55 \times 205.8 = 113.3 \text{mm}$ 100 < 113.3 --> OK ----- All Dimensional Checks Satisfied Bolt bearing capacity on the End Plate $P_{bb} = dt_p p_b = 20x20x460/1000 = 184kN$ Bolt Shear Capacity $P_s = p_s A_s = 375x245/1000 = 91.9kN$ P_{ss} = the lesser of P_{bb} and P_s $P_{ss} = 91.9 k N$ Enhanced bolt tension capacity $P_t' = p_t A_t$ $P_t' = 560x245/1000 = 137.2 \text{kN}$ Maximum tensile length of beam web per bolt row: $L_t = (g/2)\tan(60) = (100/2)\tan(60) = 86.6mm$ above and below each bolt row. N.B. the length below may not extend into the length above from the row below. m, bolt centre to 20% into weld $m_1 = (g/2) - (t/2) - 0.8s_w = 39.7mm$ $m_2 = e_b - T - 0.8s_f = 19mm$ $\lambda_1 = (m_1/(m_1+e) = 0.43mm$ $\lambda_2 = (m_2/(m_1+e) = 0.2mm$ α = 6.283 (P207 Appendix iii) n, effective edge distance = min[edge distance = 53, 1.25m = 49.6] = 49.6mm Effective Lengths $L_{eff}(i) = 2\pi m = 249.4mm$ $L_{eff}(ii) = 4m + 1.25e = 225mm$ $L_{eff}(iii) = \alpha m = 6.283 \times 39.7 = 249.4 mm$ L_{eff} for bolts acting alone (Table 2.5): Bottom Row: L_{eff} = min{max(ii,iii),i} = 237.2mm Other Rows: Leff = min{ii,i} = 225mm Leff for bolts acting as a group (Table 2.6): Bottom Row: $L_{eff} = max\{ii/2, iii-ii/2\}+p/2 = 157.2mm$ Intermediate Rows: $L_{eff} = P = 65mm$ Top Row: $L_{eff} = ii/2 + p/2$ = 145mm

Byways, Slab Lane, Downton, Salisbury, SP5 3PS. Tel: 01725 512065

Date:	04/10/18	Job No: 3102
Client:	Mr & Mrs A B Cee	Sheet: 9/9
Address:	The Barn, Sometown, Borsetshire,	

С

Co	Ilculation	Output
	$M_p = L_{eff} x t^2 x p_y/4$	
	Row Capacity	
	Mode 1 (End plate yielding): $P_r=4M_p/m$	
	Mode 2 (End plate yielding and bolts fail in tension): $P_r = (2M_p + n(\Sigma P_t'))/(m+n)$	
	Mode 3 (Bolt failure): $P_r = \Sigma P_t'$	
	Bolts rows are numbered from the bottom up (bottom pair = 1; top pair = 3)	
	ROW L _{eff} M _p Model Mode2 Mode3 L _{t,web} P _{t,web} P _{t,group} P _t (kN)	
	1 237 6287 633 293 274 274.4 <<	
	2 225 5964 601 286 274 173 448 274.4 [1+2] 302 8010 807 484 549 484 484 4	
	<< indicates the lesser value	
	Check Moment and Shear Capacity of Splice	
	Compressive Resistance of Compression (top) Flange:	
	$P_c = 1.4xP_yxT_bxB_b = 1.4x275x14.2x205.8/1000 = 1125.1kN$	
	Bolt Line Bolt LA(mm) $P_r(kN)$ RM(kNm) P_{ss} or P_{ts} $F_v(kN)$	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	3 31 0 0 91.9 183.75 Totals 484.2 Mc=63.8 330.75	
	Beam section ultimate moment capacity $M_p = P_y \times S_{xx} = 275x656/1000 = 180.4$ kNm Splice Moment Capacity $M_c = 63.8$ kNm	
	Design Moment = 52.81 kNm < Mc = 63.8 kNm> OK	
	Design Shear Force = $53kN < F_v = 330.75kN> OK$	
	Therefore Beam Splice as Designed is Satisfactory	
	END OF CALCULATIONS	
	.0	
	Notes: Beam lengths used in these calculations are clear spans. The contractor should check, on site, required beam lengths before ordering.	
	All temporary works are the responsibility of the contractor. If in doubt you should seek the engineer's advice.	
	Brickwork and foundations below beam bearings should be checked to confirm ability to carry additional loading. If brickwork is inadequate, it should be rebuilt back a minimum of 450mm and down to ground level.	
	confirm ability to carry additional loading. If brickwork is inadequate, it should	